Stochastic C-Stability and B-Consistency of Explicit and Implicit Euler-Type Schemes

نویسندگان

  • Wolf-Jürgen Beyn
  • Elena Isaak
  • Raphael Kruse
چکیده

Abstract. This paper is concerned with the numerical approximation of stochastic ordinary differential equations, which satisfy a global monotonicity condition. This condition includes several equations with super-linearly growing drift and diffusion coefficient functions such as the stochastic Ginzburg-Landau equation and the 3/2-volatility model from mathematical finance. Our analysis of the mean-square error of convergence is based on a suitable generalization of the notions of C-stability and B-consistency known from deterministic numerical analysis for stiff ordinary differential equations. An important feature of our stability concept is that it does not rely on the availability of higher moment bounds of the numerical one-step scheme. While the convergence theorem is derived in a somewhat more abstract framework, this paper also contains two more concrete examples of stochastically C-stable numerical one-step schemes: the split-step backward Euler method from Higham et al. (2002) and a newly proposed explicit variant of the Euler-Maruyama scheme, the so called projected Euler-Maruyama method. For both methods the optimal rate of strong convergence is proven theoretically and verified in a series of numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES

We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

متن کامل

Stochastic C-Stability and B-Consistency of Explicit and Implicit Milstein-Type Schemes

Abstract. This paper focuses on two variants of the Milstein scheme, namely the split-step backward Milstein method and a newly proposed projected Milstein scheme, applied to stochastic differential equations which satisfy a global monotonicity condition. In particular, our assumptions include equations with super-linearly growing drift and diffusion coefficient functions and we show that both ...

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

A New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme

Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...

متن کامل

A New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme

Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2016